Checklist
PRISMA.checklist_dataframe
— Functionchecklist_dataframe()::DataFrame
returns a template PRISMA checklist as a DataFrame
Returns
DataFrame
: the template dataframe
Example
julia> using PRISMA
julia> isa(checklist_dataframe(), DataFrame)
true
PRISMA.checklist_template
— Functionchecklist_template(out::Any="checklist.csv")
saves a template checklist DataFrame
as a CSV.
Arguments
out::Any
: Accepts the same types asCSV.write
Example
julia> using PRISMA
julia> checklist_template()
"checklist.csv"
PRISMA.checklist_read
— Functionchecklist_read(fn::AbstractString)::DataFrame
reads the template data to a DataFrame
Arguments
fn::AbstractString
: the name of the file to read
Returns
DataFrame
: the template dataframe
Example
julia> using PRISMA
julia> checklist_template()
"checklist.csv"
julia> isa(checklist_read("checklist.csv"), DataFrame)
true
PRISMA.checklist
— Functionchecklist(paper::AbstractString)::Checklist
checklist(paper::Vector{UInt8})::Checklist
This function returns a completed PRISMA checklist as the type Checklist
. The Checklist
type includes a completed checklist as a DataFrame
and the metadata of the paper as a OrderedDict
. The paper
argument can be a path to a pdf file or an array of bytes. This function uses the C++ library Poppler
via Poppler_jll
to parse the pdf and the natural language processing functionality in Julia via Transformers.jl
to find items from the checklist in the paper and populate the Comments or location in manuscript
and Yes/No/NA
columns in the DataFrame
from checklist_dataframe
.
The following metadata is parsed from the pdf file and stored in the OrderedDict
as:
"title"
: the title of the paper"subject"
: the subject of the paper"author"
: the author of the paper"creator"
: the creator of the paper"producer"
: the producer of the paper"creation date"
: the date the paper was created"modification date"
: the date the paper was last modified"pages"
: the number of pages in the paper"paper size"
: the size of the paper"paper rotation"
: the rotation of the paper"file size"
: the size of the pdf file"optimized"
: whether the pdf was optimized"pdf version"
: the version of the pdf
All keys and values in the dictionary ar eof type String
. If the parsing fails the value will be an empty string.
Arguments
paper::AbstractString
: a path to a pdf file as a stringpaper::Vector{UInt8}
: the pdf data as an array of bytes
Returns
Checklist
: a completed checklist with the paper's metadata
PRISMA.checklist_save
— Functionchecklist_save(out::Any, cl::Checklist)
checklist_save(out::Any, df::DataFrame)
saves a Checklist
as a CSV.
Arguments
out::Any
: Accepts the same types asCSV.write
cl::Checklist
: the checklist to savedf::DataFrame
: the dataframe to save
PRISMA.Checklist
— TypeChecklist(dataframe::DataFrame=checklist_dataframe(), metadata::OrderedDict=OrderedDict())
this types represents a PRISMA checklist in the form of a DataFrame
and the metadata of the paper that was used to generate it as a OrderedDict
.
Fields
dataframe::DataFrame
: the checklist as aDataFrame
metadata::OrderedDict
: the metadata of the paper
Example
using PRISMA
cl::Checklist = checklist("paper.pdf")
title = cl.metadata["title"]
println(title)
pages = cl.metadata["pages"]
println(pages)